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Abstract. Chiral perturbation theory is the effective field theory of the strong interactions at low energies.
We will give a short introduction to chiral perturbation theory for mesons and will discuss, as an example,
the electromagnetic polarizabilities of the pion. These have recently been extracted from an experiment
on radiative π+ photoproduction from the proton (γp→ γπ+n) at the Mainz Microtron MAMI. Next we
will turn to the one-baryon sector of chiral perturbation theory and will address the issue of a consistent
power counting scheme. As examples of the heavy-baryon framework we will comment on the extraction of
the axial radius from pion electroproduction and will discuss the generalized polarizabilities of the proton.
Finally, we will discuss two recently proposed manifestly Lorentz-invariant renormalization schemes and
illustrate their application in a calculation of the nucleon electromagnetic form factors.

PACS. 11.10.Gh Renormalization – 11.30.Rd Chiral symmetries – 13.40.-f Electromagnetic processes and
properties – 13.40.Gp Electromagnetic form factors – 13.60.Fz Elastic and Compton scattering – 13.60.Le
Meson production

1 Introduction

Chiral perturbation theory (ChPT) [1,2,3,4] is the effec-
tive field theory (EFT) [5] of the strong interactions at
low energies. The central idea of the EFT approach was
formulated by Weinberg as follows [1]: “. . . if one writes
down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and
then calculates matrix elements with this Lagrangian to
any given order of perturbation theory, the result will sim-
ply be the most general possible S-matrix consistent with
analyticity, perturbative unitarity, cluster decomposition
and the assumed symmetry principles.” In the context of
the strong interactions these ideas have first been applied
to the interactions among the Goldstone bosons of spon-
taneous symmetry breaking in quantum chromodynamics
(QCD). The effective theory is formulated in terms of the
asymptotically observed states instead of the quark and
gluon degrees of freedom of the underlying (fundamental)
theory, namely QCD. The corresponding EFT—mesonic
chiral perturbation theory—has been tested at the two-
loop level (see, e.g., [6,7] for a pedagogical introduction).
A successful EFT program requires both the knowledge of
the most general Lagrangian up to and including the given
order one is interested in as well as an expansion scheme
for observables. Due to the vanishing of the Goldstone bo-
son masses in the chiral limit in combination with their
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vanishing interactions in the zero-energy limit, a deriva-
tive and quark-mass expansion is a natural scenario for
the corresponding EFT. At present, in the mesonic sector
the Lagrangian is known up to and including O(q6), where
q denotes a small quantity such as a four-momentum or a
pion mass. The combination of dimensional regularization
with the modified minimal subtraction scheme of ChPT [2]
leads to a straightforward correspondence between the
loop expansion and the chiral expansion in terms of mo-
menta and quark masses at a fixed ratio, and provides a
consistent power counting for renormalized quantities.

In the extension to the one-nucleon sector [4] an ad-
ditional scale, namely the nucleon mass, enters the de-
scription. In contrast to the Goldstone boson masses, the
nucleon mass does not vanish in the chiral limit. As a re-
sult, the straightforward correspondence between the loop
expansion and the chiral expansion of the mesonic sec-
tor, at first sight, seems to be lost: higher-loop diagrams
can contribute to terms as low as O(q2) [4]. This problem
has been eluded in the framework of the heavy-baryon
formulation of ChPT [8,9], resulting in a power counting
analogous to the mesonic sector. The basic idea consists
in expressing the relativistic nucleon field in terms of a
velocity-dependent field, thus dividing nucleon momenta
into a large piece close to on-shell kinematics and a soft
residual contribution. Most of the calculations in the one-
baryon sector have been performed in this framework (for
an overview see, e.g., [10]) which essentially corresponds to
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a simultaneous expansion of matrix elements in 1/m and
1/(4πFπ). However, there is price one pays when giving up
manifest Lorentz invariance of the Lagrangian. At higher
orders in the chiral expansion, the expressions due to the
1/m corrections of the Lagrangian become increasingly
complicated [11,12]. Moreover, not all of the scattering
amplitudes, evaluated perturbatively in the heavy-baryon
framework, show the correct analytical behavior in the
low-energy region [13]. In recent years, there has been
a considerable effort in devising renormalization schemes
leading to a simple and consistent power counting for the
renormalized diagrams of a manifestly Lorentz-invariant
approach [14,15,16,17,18,19,20,21].

In the following we will highlight a few topics in chiral
perturbation theory which have been subject of experi-
mental tests at the Mainz Microtron MAMI.

2 Chiral perturbation theory for mesons

2.1 The effective Lagrangian and Weinberg’s power
counting scheme

The starting point of mesonic chiral perturbation theory
is a chiral SU(Nl)L × SU(Nl)R ×U(1)V symmetry of the
QCD Lagrangian for Nl massless (light) quarks:

L0QCD =

Nl∑

l=1

(q̄R,liD/ qR,l + q̄L,liD/ qL,l)−
1

4
Gµν,aGµνa . (1)

In eq. (1), qL,l and qR,l denote the left- and right-handed
components of the light quark fields. Here, we will be con-
cerned with the cases Nl = 2 and Nl = 3 referring to
massless u and d or u, d and s quarks, respectively. Fur-
thermore, we will neglect the terms involving the heavy-
quark fields. The covariant derivative DµqL/R,l contains
the flavor-independent coupling to the eight gluon gauge
potentials, and Gµν,a are the corresponding field strengths.
The Lagrangian of eq. (1) is invariant under separate
global SU(Nl)L/R transformations of the left- and right-
handed fields. In addition, it has an overall U(1)V sym-
metry. Several empirical facts give rise to the assumption
that this chiral symmetry is spontaneously broken down
to its vectorial subgroup SU(Nl)V ×U(1)V . For example,
the low-energy hadron spectrum seems to follow multiplic-
ities of the irreducible representations of the group SU(Nl)
(isospin SU(2) or flavor SU(3), respectively) rather than
SU(Nl)L × SU(Nl)R, as indicated by the absence of de-
generate multiplets of opposite parity. Moreover, the light-
est mesons form a pseudoscalar octet with masses that
are considerably smaller than those of the corresponding
vector mesons. According to Coleman’s theorem [22], the
symmetry pattern of the spectrum reflects the invariance
of the vacuum state. Therefore, as a result of Goldstone’s
theorem [23,24], one would expect 6− 3 = 3 or 16− 8 = 8
massless Goldstone bosons for Nl = 2 and Nl = 3, respec-
tively. These Goldstone bosons have vanishing interactions
as their energies tend to zero. Of course, in the real world,
the pseudoscalar meson multiplet is not massless which

is a result of the finite quark masses of the u, d and s
quarks. This explicit symmetry breaking in terms of the
quark masses is treated perturbatively.

The symmetries as well as the symmetry breaking pat-
tern of QCD—once the quark masses are included—are
mapped onto the most general (effective) Lagrangian for
the interaction of the Goldstone bosons. The Lagrangian
is organized in the number of the (covariant) derivatives
and of the quark mass terms [1,2,3,25,26,27,28,29,30,31]

Lπ = L2 + L4 + L6 + · · · , (2)

where the lowest-order Lagrangian is given by1

L2 =
F 2

4
Tr
[
DµU(DµU)† + χU † + Uχ†

]
. (3)

Here,

U(x) = exp

(
i
φ

F

)
, φ =

(
π0

√
2π+√

2π− −π0
)
,

is a unimodular unitary (2 × 2) matrix containing the
Goldstone boson fields. In eq. (3), F denotes the pion-
decay constant in the chiral limit: Fπ = F [1 + O(m̂)] =
92.4MeV. When including the electromagnetic interac-
tion, the covariant derivative is defined as DµU = ∂µU +
ieAµ[Q,U ], where Q = diag(2/3,−1/3) denotes the quark
charge matrix. We work in the isospin-symmetric limit
mu = md = m̂. The quark masses are contained in
χ = 2Bm̂ = M2, where M2 denotes the lowest-order ex-
pression for the squared pion mass and B is related to the
quark condensate 〈q̄q〉0 in the chiral limit. The next-to-
leading-order Lagrangian contains 7 low-energy constants
li [2]

L4 = l5

[
Tr(fRµνUf

µν
L U †)− 1

2
Tr(fLµνf

µν
L + fRµνf

µν
R )

]

+i
l6
2
Tr
(
fRµνD

µU(DνU)† + fLµν(D
µU)†DνU

)
+ · · · , (4)

where we have displayed those terms which will be relevant
for the discussion of Compton scattering below. In that
case, the field strength is given by

fRµν = fLµν = −e(∂µAν − ∂νAµ)Q.

In addition to the most general Lagrangian, one needs
a method to assess the importance of various diagrams cal-
culated from the effective Lagrangian. Using Weinberg’s
power counting scheme [1] one may analyze the behavior
of a given diagram calculated in the framework of eq. (2)
under a linear re-scaling of all external momenta, pi 7→ tpi,
and a quadratic re-scaling of the light quark masses,
m̂ 7→ t2m̂, which, in terms of the Goldstone boson masses,
corresponds to M2 7→ t2M2. The chiral dimension D of a
given diagram with amplitude M(pi, m̂) is defined by

M(tpi, t
2m̂) = tDM(pi, m̂), (5)

1 In the following, we will give equations for the two-flavor
case.
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where, in n dimensions,

D = nNL − 2Iπ +
∞∑

k=1

2kNπ
2k (6)

= 2 + (n− 2)NL +
∞∑

k=1

2(k − 1)Nπ
2k (7)

≥ 2 in 4 dimensions.

Here, NL is the number of independent loop momenta, Iπ
the number of internal pion lines, and Nπ

2k the number of
vertices originating from L2k. A diagram with chiral di-
mension D is said to be of order O(qD). Clearly, for small
enough momenta and masses diagrams with small D, such
as D = 2 or D = 4, should dominate. Of course, the re-
scaling of eq. (5) must be viewed as a mathematical tool.
While external three-momenta can, to a certain extent, be
made arbitrarily small, the re-scaling of the quark masses
is a theoretical instrument only. Note that, for n = 4,
loop diagrams are always suppressed due to the term
2NL in eq. (6). In other words, we have a perturbative
scheme in terms of external momenta and masses which
are small compared to some scale (here 4πF ≈ 1GeV).

Figures 1 and 2 show contributions to the pion self-
energy with D = 4 · 1− 2 · 1 + 2 · 1 = 4 and D = 4 · 4− 2 ·
5 + 2 · 2 = 10, respectively. As a specific example, let us
consider the contribution of fig. 1 to the pion self-energy.
Without going into the details, the explicit result of the
one-loop contribution is given by (see, e.g., [6])

Σloop(p
2) =

4p2 −M2

6F 2
Iπ(M

2, µ2, n) = O(q4),

where the dimensionally regularized integral is given by

Iπ(M
2, µ2, n) =

M2

16π2

[
R+ ln

(
M2

µ2

)]
+O(n− 4). (8)

In eq. (8), R is defined as

R =
2

n− 4
− [ln(4π)− γE + 1], (9)

with n denoting the number of space-time dimensions
and γE = −Γ ′(1) being Euler’s constant. Note that
both factors—the fraction and the integral—each count as
O(q2) resulting in O(q4) for the total expression as antic-
ipated. In other words, when calculating one-loop graphs,
using vertices from L2 of eq. (3), one generates infini-
ties (so-called ultraviolet divergences). In the framework
of dimensional regularization these divergences appear as
poles at space-time dimension n = 4, since R is infinite
as n→ 4. The loop diagrams are renormalized by absorb-
ing the infinite parts into the redefinition of the fields and
the parameters of the most general Lagrangian. Since L2
of eq. (3) is not renormalizable in the traditional sense,
the infinities cannot be absorbed by a renormalization of
the coefficients F and B. However, to quote from ref. [32]:
“. . . the cancellation of ultraviolet divergences does not re-
ally depend on renormalizability; as long as we include

2

Fig. 1. One-loop contribution to the pion self-energy. The
number 2 in the interaction blob refers to L2.

22

Fig. 2. Four-loop contribution to the pion self-energy.

every one of the infinite number of interactions allowed
by symmetries, the so-called non-renormalizable theories
are actually just as renormalizable as renormalizable the-
ories.” According to Weinberg’s power counting of eq. (6),
one-loop graphs with vertices from L2 are of O(q4). The
conclusion is that one needs to adjust (renormalize) the
parameters of L4 to cancel one-loop infinities. In doing
so, one still has the freedom of choosing a suitable renor-
malization condition. For example, in the minimal sub-
traction scheme (MS) one would fix the parameters of the
counterterm Lagrangian such that they would precisely
absorb the contributions proportional to 2/(n− 4). In the

modified minimal subtraction scheme of ChPT (M̃S) em-
ployed in [2], the seven (bare) coefficients li of the O(q4)
Lagrangian of (4) are expressed in terms of renormalized
coefficients lri as

li = lri + γi
R

32π2
, (10)

where the γi are fixed numbers.

2.2 Electromagnetic polarizabilities of the pion

In the framework of classical electrodynamics, the elec-
tric and magnetic polarizabilities α and β describe the
response of a system to a static, uniform, external electric
and magnetic field in terms of induced electric and mag-
netic dipole moments. In principle, empirical information
on the pion polarizabilities can be obtained from the dif-
ferential cross section of low-energy Compton scattering
on a charged pion

dσ

dΩlab
=

(
ω′

ω

)2
e2

4πMπ

{
e2

4πMπ

1 + z2

2

−ωω
′

2

[
(α+ β)π+(1 + z)2 + (α− β)π+(1− z)2

]}

+ · · · ,
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where z = q̂ ·q̂ ′ and ω′/ω = [1+ω(1−z)/Mπ]. The forward
and backward differential cross sections are sensitive to
(α+ β)π+ and (α− β)π+ , respectively.

The predictions for the charged pion polarizabilities at
O(q4) [33] result from an old current-algebra low-energy
theorem [34]

απ+ = −βπ+ = 2
e2

4π

1

(4πFπ)2Mπ

l̄6 − l̄5
6

= (2.64± 0.09)× 10−4 fm3,

which relates Compton scattering on a charged pion,
γπ+ → γπ+, in terms of a chiral Ward identity to radiative
charged-pion beta decay, π+ → e+νeγ. The linear combi-
nation l̄6− l̄5 of scale-independent low-energy constants [2]
is fixed using the most recent determination of the ratio of
the pion axial-vector form factor FA and the vector form
factor FV via the radiative pion beta decay [35]:

γ =
1

6
(l̄6 − l̄5) =

FA
FV

= 0.443± 0.015.

A two-loop analysis (O(q6)) of the charged-pion polariz-
abilities has been worked out in [36,37]2:

(α+ β)π+ = (0.3± 0.1)× 10−4 fm3, (11)

(α− β)π+ = (4.4± 1.0)× 10−4 fm3. (12)

The degeneracy απ+ = −βπ+ is lifted at the two-loop level.
The corresponding corrections amount to an 11% (22%)
change of theO(q4) result for απ+ (βπ+), indicating a simi-
lar rate of convergence as for the ππ-scattering lengths [2,
38]. The effect of the new low-energy constants appear-
ing at O(q6) on the pion polarizability was estimated via
resonance saturation by including vector and axial-vector
mesons. The contribution was found to be about 50% of
the two-loop result. However, one has to keep in mind
that [36,37] could not yet make use of the improved anal-
ysis of radiative pion decay which, in the meantime, has
also been evaluated at two-loop accuracy [39,40]. Taking
higher orders in the quark mass expansion into account,
Bijnens and Talavera obtain (l̄6 − l̄5) = 2.98 ± 0.33 [39],
which would slightly modify the leading-order prediction
to απ+ = (2.96 ± 0.33) × 10−4 fm3 instead of απ+ =
(2.7±0.4)×10−4 fm3 used in [36,37]. Accordingly, the dif-
ference (α−β)π+ of (12) would increase to 4.9× 10−4 fm3

instead of 4.4× 10−4 fm3, whereas the sum would remain
the same as in eq. (11).

As there is no stable pion target, empirical informa-
tion about the pion polarizabilities is not easy to obtain.
For that purpose, one has to consider reactions which
contain the Compton scattering amplitude as a building
block, such as, e.g., the Primakoff effect in high-energy

2 References [36,37] use (l̄6 − l̄5) = 2.7 ± 0.4 instead of
2.64± 0.72 which was obtained in ref. [2] from γ = 0.44± 0.12.
Correspondingly, this also generates a smaller error in the
O(q4) prediction απ+ = (2.7 ± 0.4) × 10−4 fm3 instead of
(2.62± 0.71)× 10−4 fm3.

+

p n

π

π

γ γ

+

Fig. 3. The reaction γp→ γπ+n contains Compton scattering
on a pion as a sub diagram in the t channel, where t = (pn −
pp)

2.

pion-nucleus bremsstrahlung, π−Z → π−Zγ [41], radia-
tive pion photoproduction on the nucleon, γp→ γπ+n [42,
43], and pion pair production in e+e− scattering, e+e− →
e+e−π+π− [44,45,46,47]. The results of the older experi-
ments are summarized in table 1.

The potential of studying the influence of the pion po-
larizabilities on radiative pion photoproduction from the
proton was extensively studied in [48]. In terms of Feyn-
man diagrams, the reaction γp → γπ+n contains real
Compton scattering on a charged pion as a pion pole dia-
gram (see fig. 3). In the recent experiment on γp→ γπ+n
at the Mainz Microtron MAMI [43], the cross section was
obtained in the kinematic region 537 MeV < Eγ < 817
MeV, 140◦ ≤ θcmγγ′ ≤ 180◦. The values of the pion polar-
izabilities have been obtained from a fit of the cross sec-
tion calculated by different theoretical models to the data
rather than performing an extrapolation to the t-channel
pole of the Chew-Low type [49,50]. Figure 4 shows the
experimental data, averaged over the full photon beam
energy interval and over the squared pion-photon center-
of-mass energy s1 from 1.5 M2

π to 5 M2
π as a function of

the squared pion momentum transfer t in units of M 2
π .

For such small values of s1, the differential cross section
is expected to be insensitive to the pion polarizabilities.
Also shown are two model calculations: model 1 (solid
curve) is a simple Born approximation using the pseu-
doscalar pion-nucleon interaction including the anomalous
magnetic moments of the nucleon; model 2 (dashed curve)
consists of pole terms without the anomalous magnetic
moments but including contributions from the resonances
∆(1232), P11(1440),D13(1520) and S11(1535). The dotted
curve is a fit to the experimental data.

Table 1. Previous experimental data on the charged pion po-
larizability απ+ .

Reaction Experiment απ+ [10−4 fm3]

π−Z → π−Zγ Serpukhov [41] 6.8± 1.4± 1.2
γp→ γπ+n Lebedev Phys. Inst. [42] 20± 12
γγ → π+π− PLUTO [44] 19.1± 4.8± 5.7

DM 1 [45] 17.2± 4.6
DM 2 [46] 26.3± 7.4
MARK II [47] 2.2± 1.6
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Fig. 4. Differential cross section averaged over 537MeV <
Eγ < 817MeV and 1.5 M2

π < s1 < 5M2
π . Solid line: model 1;

dashed line: model 2; dotted line: fit to experimental data.
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Fig. 5. The cross section of the process γp→ γπ+n integrated
over s1 and t in the region where the contribution of the pion
polarizability is biggest and the difference between the predic-
tions of the theoretical models under consideration does not
exceed 3 %. The dashed and dashed-dotted lines are predic-
tions of model 1 and the solid and dotted lines of model 2 for
(α− β)π+ = 0 and (α− β)π+ = 14× 10−4 fm3, respectively.

The kinematic region where the polarizability contri-
bution is biggest is given by 5M 2

π < s1 < 15M2
π and

−12M2
π < t < −2M2

π . Figure 5 shows the cross section as a
function of the beam energy integrated over s1 and t in this
second region. The dashed and solid lines (dashed-dotted
and dotted lines) refer to models 1 and 2, respectively,
each with (α− β)π+ = 0 ((α− β)π+ = 14× 10−4 fm3). By
comparing the experimental data of the 12 points with
the predictions of the models, the corresponding values of
(α − β)π+ for each data point have been determined in
combination with the corresponding statistical and sys-
tematic errors. The result extracted from the combined
analysis of the 12 data points reads [43]

(α− β)π+ = (11.6± 1.5stat ± 3.0syst ± 0.5mod)× 10−4 fm3

(13)
and has to be compared with the ChPT result of, say,
(4.9± 1.0)× 10−4 fm3 which deviates by 2 standard devi-
ations from the experimental result. On the other hand,
the application of dispersion sum rules as performed in [51]
yields (α− β)π+ = (10.3± 1.9)× 10−4 fm3.

Both the precision measurement of radiative pion beta
decay [35] and of radiative pion photoproduction indicate
that further theoretical and experimental work is needed.

In particular, the analysis of ref. [35] suggests an inade-
quacy of the present V − A description of the radiative
beta decay, which would also reflect itself in an inade-
quacy of the ChPT description in its present form. What
remains to be understood is why the dispersion sum rules
give such a dramatically different result from the ChPT
calculation where the higher-order terms have been esti-
mated from resonance saturation by including vector and
axial-vector mesons. Clearly, the model-dependent input
deserves further study. In this context, a full and con-
sistent one-loop calculation of γp → γπ+n including the
Delta resonance [52] would be desirable.

For a discussion of the so-called generalized pion po-
larizabilities see [53,54,55,56].

2.3 Future perspectives at MAMI

With the setup of the Crystal Ball detector, a dedicated η
physics program will be possible at MAMI. In the reaction
γ + p → p + η, 107 etas will be produced per day. The
main physics objectives will be the investigation of neutral
decay channels.

In the framework of SU(3)L × SU(3)R symmetry the
decay process η → π0γγ is closely related to γγ → π0π0.
At O(q4), the amplitude is given entirely in terms of one-
loop diagrams involving vertices of O(q2). The prediction
for the decay width was found to be two orders of mag-
nitude smaller [57] than the measured value. The pion
loops are small due to approximate G-parity invariance
whereas the kaon loops are suppressed by the large kaon
mass in the propagator. Therefore, higher-order contri-
butions must play a dominant role in η → π0γγ. Even
at O(q6) differences of a factor of two are found for
the decay rate and spectrum [57,58,59,60,61,62,63,64]
although the most recent result for the decay width of
Γ (η → π0γγ) = (0.45 ± 0.12) eV agrees with the orig-
inal prediction (0.42 ± 0.20) eV of ref. [57]. The decay
η → π0π0π0 is a sensitive test of isospin symmetry vi-
olation with the transition amplitude being proportional
to the light quark mass difference (mu − md) [65,66].
Moreover, the electromagnetic interaction was shown to
produce only a small contribution [67]. As a final exam-
ple for “allowed” decays we refer to the rare eta decay
η → π0π0γγ [68,69]. On the other hand, in the forbidden
decays such as η → π0π0 and η → 4π0 one will investigate
(P,CP ) violation which may be connected to the so-called
θ term in QCD.

As a final example we would like to point at the po-
tential of investigating the γπ+ → π+π0 amplitude in the
γp→ nπ+π0 reaction. This would allow for an alternative
test of the Wess Zumino Witten action [70,71] in terms of
the F3π amplitude (see [72] for a recent overview).

3 Chiral perturbation theory for baryons

3.1 The power counting problem

The standard effective Lagrangian relevant to the single-
nucleon sector contains, in addition to eq. (2), the most
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general πN Lagrangian [4,11,12],

LπN = L(1)πN + L(2)πN + · · · . (14)

Due to the additional spin degree of freedom LπN contains
both odd and even powers in small quantities. In order
to illustrate the issue of power counting in the baryonic
sector, we consider the lowest-order πN Lagrangian [4],
expressed in terms of bare fields and parameters denoted
by subscripts 0,

L(1)πN = Ψ̄0

(
iγµ∂

µ −m0 −
1

2

◦
gA0
F0

γµγ5τ
a∂µπa0

)
Ψ0 + · · · ,

(15)
where Ψ0 and π0 denote a doublet and a triplet of bare
nucleon and pion fields, respectively. After renormaliza-

tion, m,
◦
gA, and F refer to the chiral limit of the physical

nucleon mass, the axial-vector coupling constant, and the
pion-decay constant, respectively.

In sect. 2.1 we saw that, in the purely mesonic sec-
tor, contributions of n-loop diagrams are at least of order
O(q2n+2), i.e., they are suppressed by q2n in comparison
with tree-level diagrams. An important ingredient in de-
riving this result was the fact that we treated the squared
pion mass as a small quantity of order q2. Such an ap-
proach is motivated by the observation that the masses
of the Goldstone bosons must vanish in the chiral limit.
In the framework of ordinary chiral perturbation theory
M2

π ∼ m̂ which translates into a momentum expansion of
observables at fixed ratio m̂/p2. On the other hand, there
is no reason to believe that the masses of hadrons other
than the Goldstone bosons should vanish or become small
in the chiral limit. In other words, the nucleon mass enter-
ing the pion-nucleon Lagrangian of eq. (15) should not be
treated as a small quantity of, say, order O(q). Naturally
the question arises how all this affects the calculation of
loop diagrams and the setup of a consistent power count-
ing scheme.

Our goal is to propose a renormalization procedure
generating a power counting for tree-level and loop dia-
grams of the (relativistic) EFT for baryons which is analo-
gous to that given in sect. 2.1 for mesons. Choosing a suit-
able renormalization condition will allow us to apply the
following power counting: a loop integration in n dimen-
sions counts as qn, pion and fermion propagators count
as q−2 and q−1, respectively, vertices derived from L2k
and L(k)πN count as q2k and qk, respectively. Here, q gener-
ically denotes a small expansion parameter such as, e.g.,
the pion mass. In total this yields for the power D of a
diagram in the one-nucleon sector the standard formula

D = nNL − 2Iπ − IN +

∞∑

k=1

2kNπ
2k +

∞∑

k=1

kNN
k (16)

= 1+(n−2)NL+
∞∑

k=1

2(k−1)Nπ
2k+

∞∑

k=1

(k−1)NN
k (17)

≥ 1 in 4 dimensions,

where NL, Iπ, IN , Nπ
2k, and NN

k denote the number of
independent loop momenta, internal pion lines, internal

Fig. 6. One-loop contribution to the nucleon self-energy. The

number 1 in the interaction blobs refers to L
(1)
πN .

nucleon lines, vertices originating from L2k, and vertices

originating from L(k)πN , respectively.
According to eq. (17), one-loop calculations in

the single-nucleon sector should start contributing at
O(qn−1). For example, let us consider the one-loop con-
tribution of fig. 6 to the nucleon self-energy. According to
eq. (16), the renormalized result should be of the order

D = n · 1− 2 · 1− 1 · 1 + 1 · 2 = n− 1. (18)

We will see below that the corresponding renormalization
scheme is more complicated than in the mesonic sector.

An explicit calculation yields [21]

Σloop = −3
◦
gA

2

0

4F 2
0

{
(p/ +m)IN +M2(p/ +m)INπ(−p, 0)

− (p2 −m2)p/

2p2
[(p2 −m2 +M2)INπ(−p, 0) + IN − Iπ]

}
,

where the relevant loop integrals are defined as

Iπ = µ4−n
∫

dnk

(2π)n
i

k2 −M2 + i0+
, (19)

IN = µ4−n
∫

dnk

(2π)n
i

k2 −m2 + i0+
, (20)

INπ(−p, 0) = µ4−n
∫

dnk

(2π)n
i

[(k − p)2 −m2 + i0+]

× 1

k2 −M2 + i0+
. (21)

Applying the M̃S renormalization scheme of ChPT [2,4]—
indicated by “r”—one obtains

Σr
loop = −3g2Ar

4F 2
r

[
− M2

16π2
(p/ +m) + · · ·

]
= O(q2),

where M2 is the lowest-order expression for the squared

pion mass. In other words, the M̃S-renormalized result
does not produce the desired low-energy behavior of
eq. (18). This finding has widely been interpreted as the
absence of a systematic power counting in the relativistic
formulation of ChPT.

3.2 Heavy-baryon approach

One possibility of overcoming the problem of power count-
ing was provided in terms of heavy-baryon chiral per-
turbation theory (HBChPT) [8,9] resulting in a power
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counting scheme which follows eqs. (16) and (17). The
basic idea consists in dividing nucleon momenta into a
large piece close to on-shell kinematics and a soft resid-
ual contribution: p = mv + kp, v

2 = 1, v0 ≥ 1 (often
vµ = (1, 0, 0, 0)). The relativistic nucleon field is expressed
in terms of velocity-dependent fields,

Ψ(x) = e−imv·x(Nv +Hv),

with

Nv = e+imv·x 1

2
(1 + v/)Ψ, Hv = e+imv·x 1

2
(1− v/)Ψ.

Using the equation of motion for Hv, one can eliminate
Hv and obtain a Lagrangian for Nv which, to lowest order,
reads [9]

L̂(1)πN = N̄v(iv ·D + gASv · u)Nv +O(1/m).

The result of the heavy-baryon reduction is a 1/m ex-
pansion of the Lagrangian similar to a Foldy-Wouthuysen
expansion with a power counting along eqs. (16) and (17).

3.3 Pion electroproduction near threshold and the
axial radius

As an example illustrating the strength of the EFT
approach we consider pion electroproduction γ∗(k) +
N(pi) → πi(q) + N(pf ) near threshold (for an overview,
see ref. [73]) and the extraction of the nucleon axial radius.
To that end we introduce the Green functions

Mµ
A,i = 〈N(pf )|Aµ

i (0)|N(pi)〉,

Mµν
JA,i =

∫
d 4x eiq·x〈N(pf )|T [Jµ(0)Aν

i (x)] |N(pi)〉,

Mµ
JP,i =

∫
d 4x eiq·x〈N(pf )|T [Jµ(0)Pi(x)] |N(pi)〉,

where the subscripts A, J and P refer to axial-vector
current, electromagnetic current and pseudoscalar density
and i refers to the ith isospin component of the axial-
vector current or the pseudoscalar density, respectively.
The so-called Adler-Gilman relation [74] provides the chi-
ral Ward identity

qνMµν
JA,i = im̂Mµ

JP,i + ε3ijMµ
A,j (22)

relating the three Green functions. In the one-photon-
exchange approximation, the invariant amplitude for pion
electroproduction can be written as Mi = −ieεµMµ

i ,
where εµ = eūγµu/k

2 is the polarization vector of the
virtual photon andMµ

i the transition-current matrix ele-
ment:

Mµ
i = 〈N(pf ), π

i(q)|Jµ(0)|N(pi)〉. (23)

The relation between the Adler-Gilman relation, eq. (22),
and pion electroproduction is established in terms of the
Lehmann-Symanzik-Zimmermann reduction formula,

Mµ
i = −i m̂

M2
πFπ

lim
q2→M2

π

(q2 −M2
π)Mµ

JP,i

=
1

M2
πFπ

lim
q2→M2

π

(q2 −M2
π)(ε3ijMµ

A,j − qνMµν
JA,i).

1 1

2

1 1

2

1

2

Fig. 7. One-loop contributions leading to a modification of the

k2 dependence of E
(−)
0+ .

At threshold, the center-of-mass transition current can be
parameterized in terms of two s-wave amplitudes E0+ and
L0+

eM |thr =
4πW

mN

[
iσ⊥E0+(k

2) + iσ‖L0+(k
2)
]
,

where W is the total center-of-mass energy, σ‖ = σ · k̂k̂
and σ⊥ = σ − σ‖.

The contribution from pion loops (see fig. 7) has been
analyzed in [75] and leads to a modification of the k2 de-

pendence of the electric dipole amplitude E
(−)
0+ [at O(q3)]

E
(−)
0+ (k2) =

egA
8πFπ

[
1 +

k2

4m2
N

(
κv +

1

2

)
+
k2

6
r2A

+
M2

π

8π2F 2
π

f

(
k2

M2
π

)
+ · · ·

]
, (24)

where κv = 3.706 is the isovector anomalous magnetic mo-
ment of the nucleon and rA is the axial radius. The first
line corresponds to the traditional expression obtained in
the framework of the partially conserved axial-vector cur-
rent hypothesis (see, e.g., [76]). The second line generates
the modification

M2
π

8π2F 2
π

f

(
k2

M2
π

)
=

k2

128F 2
π

(
1− 12

π2

)
+ · · · .

The reaction p(e, e′π+)n has been measured at MAMI
at an invariant mass of W = 1125MeV (corresponding to
a pion center of mass momentum of |q∗| = 112MeV) and
photon four-momentum transfers of Q2 = 0.117, 0.195 and
0.273GeV2 [77]. Using an effective-Lagrangian model and
a dipole form as an ansatz for the axial form factor GA,
an axial mass of

M̃A = (1.077± 0.039)GeV

was extracted which has to be compared with the average
of neutrino scattering experiments

MA = (1.026± 0.021)GeV.

Defining M̃A = MA + ∆MA, the difference between
the two results can nicely be explained in terms
of the additional k2 dependence of eq. (24) yielding
∆MA = 0.056GeV. In the meantime, the experiment
has been repeated including an additional value of Q2 =
0.058GeV2 [78] and is currently being analyzed.

Recently, there have been claims that pion electropro-
duction data at threshold cannot be interpreted in terms
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of GA [79]. However, as was shown in [80], using mini-
mal coupling alone does not respect the constraints due
to chiral symmetry. In the framework of the most general
Lagrangian, this can be seen by considering the b23 term
of the O(q3) Lagrangian [11],

L(3)eff =
1

2(4πF )2
b23 Ψ̄γ

µγ5[D
ν , f−µν ]Ψ + · · · (25)

with

f−µν = −2(∂µaν − ∂νaµ) + 2i ([vµ, aν ]− [vν , aµ])

+
i

F
[τ · π, ∂µvν − ∂νvµ] + · · · .

The Lagrangian of eq. (25) is of a non-minimal type and
the three terms contribute to the axial-vector matrix ele-
ment, the JA Green function and pion electroproduction
relevant to the Adler-Gilman relation. As a result it was
confirmed that threshold pion electroproduction is indeed
a tool to obtain information on the axial form factor of
the nucleon (see [80] for details).

3.4 Virtual Compton scattering and generalized
polarizabilities

As a second example, let us discuss the application of
HBChPT to the calculation of the so-called generalized
polarizabilities [81,82]. The virtual Compton scattering
(VCS) amplitude TVCS is accessible in the reaction e−p→
e−pγ. Model-independent predictions, based on Lorentz
invariance, gauge invariance, crossing symmetry, and the
discrete symmetries, have been derived in ref. [83]. Up
to and including terms of second order in the momenta
|q | and |q ′| of the virtual initial and real final photons,
the amplitude is completely specified in terms of quan-
tities which can be obtained from elastic electron-proton
scattering and real Compton scattering, namely mN , κ,
GE , GM , r2E , αp and βp. The generalized polarizabilities
(GPs) of ref. [82] result from an analysis of the resid-
ual piece in terms of electromagnetic multipoles. A re-
striction to the lowest-order, i.e. linear terms in ω′ leads
to only electric and magnetic dipole radiation in the fi-
nal state. Parity and angular-momentum selection rules,
charge-conjugation symmetry, and particle crossing gen-
erate six independent GPs [82,84,85].

The first results for the two structure functions PLL−
PTT /ε and PLT at Q2 = 0.33GeV2 were obtained from
a dedicated VCS experiment at MAMI [86]. Results at
higher four-momentum transfer squared Q2 = 0.92 and
Q2 = 1.76GeV2 have been reported in ref. [87]. Additional
data are expected from MIT/Bates for Q2 = 0.05GeV2

aiming at an extraction of the magnetic polarizability.
Moreover, data in the resonance region have been taken
at JLab for Q2 = 1GeV2 [88] which have been analyzed
in the framework of the dispersion relation formalism of
ref. [89,90]. Table 2 shows the experimental results of [86]
in combination with various model calculations. Clearly,
the experimental precision of [86] already allows for a crit-
ical test of the different models. Within ChPT and the
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HBChPT O(p3):  Electric polarization in the nucleon induced by the field Ex

Fig. 8. Scaled electric polarization r3αi1 [10−3 fm3] [91]. The
applied electric field points in the x-direction.

linear sigma model, the GPs are essentially due to pionic
degrees of freedom. Due to the small pion mass the ef-
fect in the spatial distributions extends to larger distances
(see also fig. 9). On the other hand, the constituent quark
model and other phenomenological models involving Gauß
or dipole form factors typically show a faster decrease in
the range Q2 < 1GeV2.

A covariant definition of the spin-averaged dipole po-
larizabilities has been proposed in ref. [55]. It was shown
that three generalized dipole polarizabilities are needed to
reconstruct spatial distributions. For example, if the nu-
cleon is exposed to a static and uniform external electric
field E, an electric polarization P is generated which is
related to the density of the induced electric dipole mo-
ments,

Pi(r) = 4παij(r)Ej . (26)

The tensor αij(r), i.e. the density of the full electric po-
larizability of the system, can be expressed as [55]

αij(r) = αL(r)r̂ir̂j + αT (r)(δij − r̂ir̂j)

+
3r̂ir̂j − δij

r3

∫ ∞

r

[αL(r
′)− αT (r

′)] r′2 dr′,

where αL(r) and αT (r) are Fourier transforms of the gen-
eralized longitudinal and transverse electric polarizabili-
ties αL(q) and αT (q), respectively. In particular, it is im-
portant to realize that both longitudinal and transverse
polarizabilities are needed to fully recover the electric po-
larization P . Figure 8 shows the induced polarization in-
side a proton as calculated in the framework of HBChPT
at O(q3) [91] and clearly shows that the polarization, in
general, does not point into the direction of the applied
electric field.

Similar considerations apply to an external magnetic
field. Since the magnetic induction is always transverse
(i.e., ∇ · B = 0), it is sufficient to consider βij(r) =
β(r)δij [55]. The induced magnetization M is given in
terms of the density of the magnetic polarizability as
M(r) = 4πβ(r)B (see fig. 9).
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Table 2. Experimental results and theoretical predictions for the structure functions PLL−PTT /ε and PLT at Q2 = 0.33GeV2

and ε = 0.62. ∗ makes use of symmetry under particle crossing and charge conjugation which is not a symmetry of the
nonrelativistic quark model.

PLL − PTT /ε [GeV−2] PLT [GeV−2]

Experiment [86] 23.7± 2.2stat. ± 4.3syst. ± 0.6syst.norm. −5.0± 0.8stat. ± 1.4syst. ± 1.1syst.norm.

Linear sigma model [92] 11.5 0.0
Effective Lagrangian model [93] 5.9 −1.9

HBChPT [94] 26.0 −5.3
Nonrelativistic quark model [95] 19.2|14.9∗ −3.2| − 4.5∗
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contribution of pion loops; solid lines: total contribution; dot-
ted lines: VMD predictions normalized to β(0) [55].

3.5 Manifestly Lorentz-invariant baryon chiral
perturbation theory

Unfortunately, when considering higher orders in the chi-
ral expansion, the expressions due to 1/m corrections
of the Lagrangian become increasingly complicated. Sec-
ondly, not all of the scattering amplitudes, evaluated per-
turbatively in the heavy-baryon framework, show the cor-
rect analytical behavior in the low-energy region. Finally,
with an increasing complexity of processes, the use of com-
puter algebra systems becomes almost mandatory. The
relevant techniques have been developed for calculations
in the Standard Model and thus refer to loop integrals of
the manifestly Lorentz-invariant type.

In the following we will concentrate on one of
several methods that have been suggested to obtain
a consistent power counting in a manifestly Lorentz-
invariant approach [14,15,16,17,18,19,20,21], namely, the
so-called extended on-mass-shell (EOMS) renormalization
scheme [21]. The central idea of the EOMS scheme con-

sists of performing additional subtractions beyond the M̃S
scheme. Since the terms violating the power counting are
analytic in small quantities, they can be absorbed by coun-
terterm contributions. Let us illustrate the approach in
terms of the integral

H(p2,m2;n) =

∫
dnk

(2π)n
i

[(k − p)2 −m2 + i0+][k2 + i0+]
,

where ∆ = (p2 − m2)/m2 = O(q) is a small quantity.
We want the (renormalized) integral to be of the order
D = n−1−2 = n−3. Applying the dimensional counting
analysis of ref. [96] (for an illustration, see the appendix
of ref. [97]), the result of the integration is of the form [21]

H ∼ F (n,∆) +∆n−3G(n,∆),

where F and G are hypergeometric functions and are an-
alytic in ∆ for any n. Hence, the part containing G for
noninteger n is proportional to a noninteger power of ∆
and satisfies the power counting. On the other hand F
violates the power counting. The crucial observation is
that the part proportional to F can be obtained by first
expanding the integrand in small quantities and then per-
forming the integration for each term [96]. This observa-
tion suggests the following procedure: expand the inte-
grand in small quantities and subtract those (integrated)
terms whose order is smaller than suggested by the power
counting. In the present case, the subtraction term reads

Hsubtr =

∫
dnk

(2π)n
i

[k2 − 2p · k + i0+][k2 + i0+]

∣∣∣∣
p2=m2

and the renormalized integral is written as HR = H −
Hsubtr = O(q) as n → 4. In the infrared renormalization
(IR) scheme of Becher and Leutwyler [16], one would keep
the contribution proportional to G (with subtracted diver-
gences when n approaches 4) and completely drop the F
term.

Let us conclude this section with a few remarks. With
a suitable renormalization condition one can also obtain a
consistent power counting in manifestly Lorentz-invariant
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baryon chiral perturbation theory including, e.g., vector
mesons [98] or the ∆(1232) resonance [52] as explicit de-
grees of freedom. Secondly, the infrared regularization of
Becher and Leutwyler [16] may be formulated in a form
analogous to the EOMS renormalization [99]. Finally, us-
ing a toy model we have explicitly demonstrated the appli-
cation of both infrared and extended on-mass-shell renor-
malization schemes to multiloop diagrams by considering
as an example a two-loop self-energy diagram [97]. In both
cases the renormalized diagrams satisfy a straightforward
power counting.

3.6 Applications

The EOMS scheme has been applied in several calcula-
tions such as the chiral expansion of the nucleon mass, the
pion-nucleon sigma term, and the scalar form factor [100],
the masses of the ground-state baryon octet [101] and the
nucleon electromagnetic form factors [102,103].

As an example, let us here consider the electromag-
netic form factors of the nucleon which are defined via the
matrix element of the electromagnetic current operator as

〈N(pf ) |Jµ(0)|N(pi)〉 =

ū(pf )

[
γµFN

1 (Q2) +
iσµνqν
2mN

FN
2 (Q2)

]
u(pi), N = p, n,

where q = pf − pi is the momentum transfer and Q2 ≡
−q2 = −t ≥ 0. Figure 10 shows the results for the electric
and magnetic Sachs form factors GE = F1−Q2/(4m2

N )F2
and GM = F1 + F2 at O(q4) in the momentum transfer
region 0GeV2 ≤ Q2 ≤ 0.4GeV2 without explicit vector-
meson degrees of freedom [102]. The O(q4) results only
provide a decent description up to Q2 = 0.1GeV2 and
do not generate sufficient curvature for larger values of
Q2. The perturbation series converges, at best, slowly and
higher-order contributions must play an important role.

Including the vector-meson degrees of freedom along
the lines of refs. [98,99] generates the additional diagrams
of fig. 11. The results for the Sachs form factors including
vector-meson degrees of freedom are shown in fig. 12. As
expected on phenomenological grounds [104], the quan-
titative description of the data has improved consider-
ably for Q2 ≥ 0.1GeV2. The small difference between the
two renormalization schemes is due to the way how the
regular higher-order terms of loop integrals are treated.
Note that on an absolute scale the differences between
the two schemes are comparable for both Gp

E and Gn
E .

Numerically, the results are similar to those of ref. [104].
Due to the renormalization condition, the contribution of
the vector-meson loop diagrams either vanishes (infrared
renormalization scheme) or turns out to be small (EOMS).
Thus, in hindsight our approach puts the traditional phe-
nomenological vector-meson dominance model on a more
solid theoretical basis.

Fig. 10. The Sachs form factors of the nucleon in manifestly
Lorentz-invariant chiral perturbation theory at O(q4) without
vector mesons. Full lines: results in the extended on-mass-shell
scheme; dashed lines: results in infrared regularization. The
experimental data are taken from ref. [105].

Fig. 11. Feynman diagrams involving vector mesons (double
lines) contributing to the electromagnetic form factors up to
and including O(q4).
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Fig. 12. The Sachs form factors of the nucleon in manifestly
Lorentz-invariant chiral perturbation theory atO(q4) including
vector mesons as explicit degrees of freedom. Full lines: results
in the extended on-mass-shell scheme; dashed lines: results in
infrared regularization. The experimental data are taken from
ref. [105].

4 Summary

Chiral perturbation theory is a cornerstone of our un-
derstanding of the strong interactions at low energies.
Mesonic chiral perturbation theory has been tremendously
successful and may be considered as a full-grown and
mature area of low-energy particle physics. The appar-
ent conflict between the determination of the O(q4) low-
energy constants (l̄6 − l̄5) from radiative pion beta decay,
on the one hand, and the polarizability measurement, on
the other hand, certainly requires additional work, in par-
ticular, from the theoretical side.

The impact on baryonic chiral perturbation theory
due to the investigation of electromagnetic reactions at
MAMI such as elastic electron-nucleon scattering, (vir-
tual) Compton scattering and the electromagnetic pro-
duction of pions cannot be overestimated. The possibility
of a consistent manifestly Lorentz-invariant approach in
combination with the rigorous inclusion of (axial-) vector-
meson degrees of freedom and of the ∆(1232) resonance
open the door to an application of ChPT in an extended
kinematic region.

I would like to thank the organizers —Hartmuth Arenhövel,
Hartmut Backe, Dieter Drechsel, Jörg Friedrich, Karl-Heinz
Kaiser and Thomas Walcher— of the symposium 20 Years of

Physics at the Mainz Microtron MAMI and express my best
wishes for the future.
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